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A B S T R A C T   

The current research on Ephemeroptera is mainly based on its morphology, since only small numbers of mito-
genomes have been reported. In this study, the mitogenomes of Epeorus carinatus (15,338 bp) and E. dayongensis 
(15,609 bp) were sequenced, annotated and compared to genome data from congeners. Both mitogenomes had 
23 tRNA genes including standard 22 and one extra tRNAMet. The duplicated tRNAMet gene had been found in 
other heptageniid species except Paegniodes cupulatus, suggesting it could be used as a molecular synapomorphy 
for partial Heptageniidae. The phylogenetic analyses based on Bayesian Inference (BI) and Maximum Likelihood 
(ML) showed that Heptageniidae was monophyletic and the relationships among known Epeorus species were 
((E. carinatus + E. herklotsi) + (E. dayongensis + E. sp. 1)), which implied the focal species E. carinatus and 
E. dayongensis should be grouped into different subgenera.   

1. Introduction 

The mitochondrial genome (mitogenome) of insects is typically a 
circular molecule 14–20 kb in length. It contains 37 genes, including 13 
protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ri-
bosomal RNA genes (rRNAs), and a large non-coding region (AT-rich 
region) which contains initiation sites for transcription and replication 
of the genome (Wolstenholme, 1992; Boore, 1999; Cameron, 2014). Due 
to the advantages of its small size, almost complete maternal inheri-
tance, rapid evolution rate and lack of introns, mitogenomes are widely 
used in comparative and evolutionary genomics, molecular evolution, 
population genetics and species identifications (Boore, 1999; Cameron, 
2014). 

Heptageniidae is the third largest family of Ephemeroptera, and in-
cludes 37 genera with more than 600 species. Previous taxonomic and 
phylogenetic analyses were based almost exclusively on morphological 
characters (Barber-James et al., 2008; Webb and McCafferty, 2008; 
Sartori, 2014a, 2014b, 2014c, 2014d; Yanai et al., 2017). Although some 
mayfly taxonomists have utilized molecular data to investigate this 
family in recent years, only a few molecular markers such as cytochrome 
c oxidase I (COI), ribosomal RNA genes (12S rRNA gene, 16S rRNA gene, 
28S rRNA gene) and Histone (H3) have been adopted individually or 

together (Yanai et al., 2017; Ogden et al., 2005, 2009; Vuataz et al., 
2013). Currently, only five complete mitogenomes of this family have 
been reported (22 mitogenomes for Ephemeroptera as a whole) (Zhou 
and Braasch, 2003; Eaton, 1871; Hsu, 1936; Zhang et al., 2008; Zhou 
et al., 2016; Tang et al., 2014; Gao et al., 2018). 

The heptageniid genus Epeorus includes 93 species distributed 
around the world and is the second largest genus in the family Hepta-
geniidae (Satori et al., 2015). Historically, this genus was morphologi-
cally divided into seven subgenera (Wang and McCafferty, 2004; Kluge, 
2004; Braasch, 2006; Chen et al., 2010; Kluge and Tiunova, 1989; 
Boonsoong and Braasch, 2013; Hrivniak et al., 2017, 2019). However, 
the validity and monophyly of those subgenera were very controversial. 
Some questions, like whether the Iron was a subgenus or a valid genus, 
or whether some other subgenera (i.e. Belovius, Ironopsis, Caucasiron) 
existed or not have been debated for a long time (Chen et al., 2010; 
Kluge and Tiunova, 1989; Boonsoong and Braasch, 2013; Hrivniak et al., 
2019). More molecular data, especially mitogenomes, will be helpful to 
test those theories. 

In this study, the mitogenomes of Epeorus carinatus (a new record 
from China) and E. dayongensis were further analyzed and compared to 
that of E. herklotsi in GenBank, in an attempt to identify the evolutionary 
character of the Epeorus mitogenomes. In addition, phylogenetic 
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analyses based on 13 PCGs were performed to test previous topologies of 
Heptageniidae. Hopefully, the new mitogenome information in this 
study will contribute to and shed more light on further studies on 
Ephemeroptera. 

2. Materials and methods 

2.1. Sample collection, morphological identification and DNA extraction 

Specimens of E. carinatus were collected in Fan-jing Mountain, 
Guizhou Province, 2019-VIII-9 and E. dayongensis specimens were 
collected in Lei-shan county, Guizhou Province, 2019-VIII-6. Nymphs 
were collected in running water by hand nets, and imagoes were 
attracted by lights. All materials were stored in ethanol (more than 95%) 
and inspected under Nikon SMZ 645 or SMZ 1500 stereomicroscopes. 
After carefully identification (Braasch and Soldán, 1984; Gui and Zhang, 
1992), these specimens were stored in anhydrous ethanol immediately 
and stored at –20℃ until DNA extraction. Total DNA was isolated using 
the TreliefTM Animal Genomic DNA Kit (TSINGKE Biotech, China) 
following the manufacturer’s instructions. The voucher specimen 
numbers of E. carinatus (voucher number: NNU–EP1235) and 
E. dayongensis (voucher number: NNU–EP1283) are 12 and 18 in-
dividuals. All specimens used in this study are deposited in the Mayfly 
collection, College of Life Sciences, Nanjing Normal University. 

2.2. Mitogenome sequencing and assembly 

For library preparation, Illumina TruSeq® DNA Sample Prep Kit 
(Illumina, USA) was used, with an average insert size of 350 bp. Whole 
genomic sequencings were performed using an Illumina HiSeq X Ten 
platform, with 150 bp pair-ended reads. Samples were sequenced 
together with other projects and two lanes were used for each mitoge-
nome. More than 2 GB raw reads (deposited in NCBI SRA, 
SAMN16427085 and SAMN16427086) of each mitogenome were trim-
med of adapter contamination using NGC QC Toolkit (Patel et al., 2012) 
and low quality and short reads were removed by Prineseq (Schmieder 
and Edwards, 2011). The final data set was de novo assembled using 
Velvet 1.2.10 imbedded in Geneious R11, with the following parameter 
settings: Minimum Overlap = 30–50 bp, Minimum Overlap Identity: 
80–100 bp, Maximum Gap Size = 2 bp, Maximum mismatches Per Read 
= 2% (Zerbino and Birney, 2008). 

2.3. Mitogenome annotation and analysis 

The coding regions of 13 PCGs were identified using the NCBI ORF 
Finder (https://www.ncbi.nlm.nih.gov/orffinder/) using the inverte-
brate mitochondrial genetic code, then translated into amino acid se-
quences using MEGA 7 (Kumar et al., 2016). tRNA genes were identified 
by tRNAscan-SE program and MITOS Web Server (Lowe and Eddy, 
1997; Bernt et al., 2013). rRNA genes were determined by MITOS Web 
Server (Bernt et al., 2013). Intergenic spacers and overlapping regions 
between genes were estimated manually. 

Base composition, relative synonymous codon usage (RSCU) and 
nucleotide substitution statistics were analyzed with MEGA 7. The bias 
of nucleotide composition was measured as AT-skew = [A – T] / [A + T] 
and GC-skew = [G – C] / [G + C] (Perna and Kocher, 1995). 

2.4. Phylogenetic analysis 

We selected 22 species of Ephemeroptera as the ingroup, including 
the two newly sequenced Epeorus species, and two species of Archae-
ognatha as outgroups, which is evolutionarily older than Ephemeroptera 
(Table S1). All 13 protein sequences were employed to perform phylo-
genetic analyses. PCGs were aligned using MAFFT 7 online server with 
the G-INS-i strategy (Katoh and Standley, 2013). Nucleotide saturation 
was tested in DAMBE 5 (Xia and Xie, 2001). The individual alignment 

fragments were then concatenated using the software Geneious 10.1.3. 
The PCG data was created to test the influence of the gene sequences. 
The best partitioning scheme and corresponding nucleotide substitution 
model for the PCG data were selected by PartitionFinder (Lanfear et al., 
2012) with Bayesian Information Criterion (BIC). Both Maximum like-
lihood (ML) and Bayesian inference (BI) were employed for phyloge-
netic analyses. The ML analysis was performed with RAxMLHPC2 on 
XSEDE 8.0.0 (Stamatakis, 2014) through the CIPRES Science Gateway 
(Miller et al., 2010) and the nucleotide substitution model used for ML 
was GTRGAMMAI. Support for clades was assessed with bootstrap 1000 
replicates. The BI analysis was performed using MrBayes 3.2.6 (Ronquist 
et al., 2012) also on CIPRES and the best model was listed in Table S2, 
two simultaneous runs with four chains (one cold chain and three hot 
chains) for 10 million generations, sampling every 1000 trees. The first 
25% samples were discarded as burn-in. 

3. Results and discussion 

3.1. General characters of mitogenomes 

The complete mitogenome sequences of the two species were 15,338 
bp (E. carinatus) and 15,609 bp (E. dayongensis) in size (GenBank 
accession numbers: MT112896 and MT112895). Both sequences con-
tained 13 PCGs (COI–III, ND1–6, ND4L, Cytb, ATP6 and ATP8), 23 tRNA 
genes (one for each amino acid, two for Leucine and Serine, and an extra 
Methionine), two rRNA genes (12S and 16S rRNA) and an AT-rich region 
(Figs. 1–2). Among them, 4 PCGs, 8 tRNA genes and two rRNA genes 
were encoded on the minority strand (N-strand) while another 24 genes 
were encoded on the majority strand (J-strand) (Figs. 1–2, Table 1). The 
arrangement and orientation of the two mitogenomes was identical to 
the ancestral gene order (Cameron, 2014), except that each had an extra 
tRNA (tRNAMet), which had already been recorded in E. herklotsi (Fig. 2). 

In the mitogenome of E. carinatus, there were 12 non-coding regions 
with a total length of 568 bp and each non-coding region ranged from 1 
to 490 bp, 14 overlap regions were present and with 37 bp in length 
totally and each overlap region ranged from 1 to 8 bp. Comparatively, 
E. dayongensis had 13 non-coding regions with totally 853 bp in length 
and each non-coding region ranged from 1 to 765 bp, 13 overlap regions 
with totally 34 bp in length and ranging from 1 to 8 bp (Table 1). In 
addition, the complete mitogenome of E. herklotsi was 15,502 bp, with 
12 non-coding regions (725 bp) and ranging from 1 to 634 bp, 13 
overlap regions (34 bp) and ranging from 1 to 8 bp. Remarkably, 
overlaps (4 bp) were detected in the junction between ATP8 and ATP6 in 
the mitogenomes of three species, although the length of this region was 
not 7 bp. Based on the hypothesis of Lavrov, the overlaps between genes 
may be a product of the selective pressure to reduce genomes size noted 
in mitochondrial (Lavrov and Brown, 2001). 

3.2. Nucleotide composition of the mitogenome 

The nucleotide composition of the three mitogenomes was compared 
in Table 2. The overall A + T content of them was 64.65% (E. carinatus), 
67.2% (E. dayongensis) and 65.67% (E. herklotsi), and each species 
showed similar A and T nucleotides biases. The A + T content compo-
sition in regions of E. carinatus was 64.07% (PCGs), 64.49% (tRNAs), 
66.23% (rRNAs) and 72.25% (AT-rich region), in E. dayongensis was 
66.26% (PCGs), 67.4% (tRNAs), 67.8% (rRNAs) and 77.38% (AT-rich 
region), and in E. herklotsi was 65% (PCGs), 65.75% (tRNAs), 65.78% 
(rRNAs) and 74.45% (AT-rich region). In addition, skew metrics of the 
mitogenomes showed negative AT-skew (-0.005 to − 0.002) and GC- 
skew (− 0.246 to − 0.208), indicating that Ts and Cs were more abun-
dant than As and Gs. Just as mentioned before (Perna and Kocher, 1995; 
Carapelli et al., 2007; Xu et al., 2020), the majority strand showed 
negative AT-skews in the all known mitogenomes of Ephemeroptera, 
differing from the majority of hexapod species, which showed positive 
AT-skews. This suggested that a special strand asymmetry reverse 
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happened in mayflies (Wei et al., 2010; Li et al., 2014; Xu et al., 2020). 
A comprehensive analysis of the genus Epeorus exhibited that the 

lowest A + T content was found in PCGs (64.07%–66.26%) and the 
highest A + T content in AT-rich region (72.25%–77.38%). 

3.3. Protein-coding genes 

The mitogenomes of E. carinatus and E. dayongensis had 9 PCGs 
encoded on the J-strand and 4 PCGs on the N-strand, as in most other 
insects. The initiation codons of all PCGs in the genus Epeorus were 
typical ATN (ATA, ATT, ATC and ATG) pattern except for APT8, COI and 
ND5. The ATP8 gene of both sequenced species started with GTG while 
that of E. herklotsi with ATG. The COI and ND5 genes of all three species 
used the start codon CCG and GTG, ND3 started with the codon ATA in 
E. carinatus, ATC in E. dayongensis and ATG in E. herklotsi. In terms of 

termination codons, COI, COII, ND4 and ND5 of three species were 
terminated with incomplete TA or T and the remaining genes with TAA 
or TAG (Table 3), which was consistent with other invertebrate insects. 
The possible interpretation was the incomplete TA or T could be tran-
scribed to be the entire codon (UAA) via post-transcriptional poly-
adenylation (Li et al., 2014; Ojala et al., 1981). 

The relative synonymous codon usage (RSCU) values of the mito-
genomes of the three species was summarized in Fig. 3. The total number 
of codons in PCGs was 3726 in E. carinatus, 3724 in E. dayongensis and 
3729 in E. herklotsi (Tables S3, S4 and S5). The result indicated that the 
codons UAA, UAG and AGG were not detected in these three species, and 
the three most frequently used codons were the same, i.e. UAA, UUU and 
AUU, corresponding to amino acid Leucine 2 (Leu2), Phenylalanine 
(Phe) and Isoleucine (Ile). 

Fig. 1. Mitochondrial map of Epeorus genes transcribed clockwisely inside and anti-clockwisely outside.  

Fig. 2. Landscape of genetic rearrangement of Epeorus carinatus and E. dayongensis.  
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3.4. tRNAs, rRNAs and AT-rich regions 

Gene structures and their arrangements are useful information to 
molecular evolution and phylogenetic reconstruction (Boore, 1999; 
Boore and Brown, 1998; Serb and Lydeard, 2003; Boore et al., 2004). For 
vertebrates, the tandem duplication random loss (TDRL) of gene 

duplicates was considered as the main mechanism, whereas in in-
vertebrates, the mechanism still remained unclear due to lacking of 
available mitogenomes from important lineages (Eberhard and Wright, 
2016; San Mauro et al., 2006; Grande et al., 2008; Guerra et al., 2018; 
Uribe et al., 2016; Xie et al., 2019). In this study, we found the mito-
genomes of Epeorus species contained one extra tRNAMet gene (Fig. 2) 

Table 1 
Annotation of the mitogenomes of E. carinatus (Ecar) and E. dayongensis (Eday).  

Feature Strand Nucleotide Number Intergenic Nucleotides Anticodon Start/Stop Codons 

Ecar Eday Ecar Eday Ecar Eday 

tRNAIle J 1–65 1–65 0 0 GAT – – 
tRNAMet J 66–131 67–132 0 1 CAT – – 
tRNAGln N 133–201 134–202 1 1 TTG – – 
tRNAMet J 203–268 206–269 1 3 CAT – – 
ND2 J 269–1303 270–1304 0 0 – ATG/TAA ATG/TAA 
tRNATrp J 1302–1369 1303–1370 –2 –2 TCA – – 
tRNACys N 1362–1425 1363–1425 –8 –8 GCA – – 
tRNATyr N 1427–1492 1427–1493 1 1 GTA – – 
COI J 1491–3024 1492–3025 –2 –2 – CCG/T CCG/T 
tRNALeu(UUR) J 3025–3090 3026–3091 0 0 TAA – – 
COII J 3095–3782 3096–3783 4 4 – ATG/T ATG/T 
tRNALys J 3783–3851 3784–3852 0 0 CTT – – 
tRNAAsp J 3852–3917 3853–3918 0 0 GTC – – 
ATP8 J 3918–4076 3919–4077 0 0 – GTG/TAA GTG/TAA 
ATP6 J 4073–4747 4074–4748 –4 –4 – ATA/TAA ATA/TAA 
COIII J 4747–5535 4748–5536 –1 –1 – ATG/TAA ATG/TAA 
tRNAGly J 5538–5602 5539–5602 2 2 TCC – – 
ND3 J 5600–5956 5603–5956 –3 0 – ATA/TAG ATC/TAG 
tRNAAla J 5955–6018 5955–6018 –2 –2 TGC – – 
tRNAArg J 6052–6115 6060–6123 33 41 TCG – – 
tRNAAsn J 6115–6178 6123–6187 –1 –1 GTT – – 
tRNASer(AGN) J 6178–6243 6187–6252 –1 –1 GCT – – 
tRNAGlu J 6247–6310 6255–6318 3 2 TTC – – 
tRNAPhe N 6309–6372 6317–6380 –2 –2 GAA – – 
ND5 N 6373–8107 6381–8115 0 0 – GTG/T GTG/T 
tRNAHis N 8108–8171 8116–8179 0 0 GTG – – 
ND4 N 8171–9516 8179–9524 –1 –1 – ATG/TA ATG/TA 
ND4L N 9510–9806 9518–9814 –7 –7 – ATG/TAA ATG/TAA 
tRNAThr J 9809–9872 9817–9880 2 2 TGT – – 
tRNAPro N 9873–9937 9881–9945 0 0 TGG – – 
ND6 J 9952–10,458 9960–10,466 14 14 – ATT/TAA ATT/TAA 
Cytb J 10,458–11,594 10,466–11,602 –1 –1 – ATG/TAG ATGTAG 
tRNASer(UCN) J 11,593–11,661 11,601–11,669 –2 –2 TGA – – 
ND1 N 11,678–12,628 11,686–12,636 16 16 – ATG/TAA ATG/TAA 
tRNALeu(CUN) N 12,630–12,695 12,638–12,702 1 1 TAG – – 
16S N 12,696–13,977 12,703–13,975 0 0 – – – 
tRNAVal N 13,978–14,048 13,976–14,046 0 0 TAC – – 
12S N 14,049–14,848 14,047–14,844 0 0 – – – 
A + T-rich J 14,849–15,338 14,845–15,609 0 0 – – – 

Notes: J refers to the majority strand and N refers to the minority strand. Position numbers refer to positions on the majority strand. 

Table 2 
Nucleotide composition in regions of mitogenomes of the genus Epeorus.  

Species Mitochondrial genome PCGs tRNAs rRNAs AT-rich region 

Length (bp) AT% AT-skew GC-skew Length (bp) AT% Length (bp) AT% Length (bp) AT% Length (bp) AT% 

E. carinatus 15,338  64.65 − 0.002 − 0.208 11,210 64.07 1515  64.49 2082  66.23 490  72.25 
E. dayongensis 15,609  67.2 − 0.005 − 0.244 11,175 66.26 1512  67.4 2071  67.8 765  77.38 
E. herklotsi 15,502  65.67 − 0.002 − 0.246 11,180 65 1512  65.75 2086  65.78 634  74.45  

Table 3 
Start and stop codons of protein-coding genes in mitogenomes of E. carinatus (Ecar), E. dayongensis (Eday) and E. herklotsi (Eher).  

Species Gene  

ATP6 ATP8 COI COII COIII Cytb ND1 ND2 ND3 ND4 ND4L ND5 ND6 

Ecar ATA/TAA GTG/TAA CCG/T ATG/T ATG/TAA ATG/TAG ATG/TAA ATG/TAA ATA/TAG ATG/TA ATG/TAA GTG/T ATT/TAA 
Eday ATA/TAA GTG/TAA CCG/T ATG/T ATG/TAA ATG/TAG ATG/TAA ATG/TAA ATC/TAG ATG/TA ATG/TAA GTG/T ATT/TAA 
Eher ATA/TAA ATG/TAA CCG/T ATG/T ATG/TAA ATG/TAG ATG/TAA ATG/TAA ATG/TAG ATG/TA ATG/TAA GTG/T ATT/TAA 

Note: The different codons are shown in red. 

W. Zhang et al.                                                                                                                                                                                                                                  



Gene 777 (2021) 145467

5

and the duplicate tRNAMet of E. dayongensis varied considerably from the 
original tRNAMet and between different species, especially in amino acid 
accepter (AA) arm and anticodon (AC) arm (Fig. S1). Moreover, the 
duplicate tRNAMet gene was found in all known mitogenomes of hep-
tageniid species except Paegniodes cupulatus (Zhang et al., 2008; Zhou 
et al., 2016; Tang et al., 2014; Gao et al., 2018; Song et al., 2019; Wu and 
Yu, 2018). It may indicate the duplicate tRNAMet gene could be used as 
the molecular synapomorphy for a portion of the family. In this research, 
all tRNAs of the three Epeorus species had standard anticodons and could 
fold into cloverleaf secondary structures except tRNASer(AGN) (Figs. 4 and 
S1). The tRNASer(AGN) could not form the complete cloverleaf secondary 
structure due to lack of dihydrouridine (DHU) loop. In addition to 
normal base pairs, the stems of the secondary structures also contained 
non-Waston-Crick base pairs. In E. carinatus, there were 40 non- 
canonical G-U (or U-G) pairs and mismatched pairs U-U for twice and 
C-U for once (Fig. S1). In E. dayongensis, 40 non-canonical G-U (or U-G) 
base pairs and C-U, U-U, A-G and C-A mismatches (each for once) were 
recognized (Fig. S1). Additionally, this phenomenon also performed in 
E. herklotsi, there were 40 non-canonical G-U (or U-G) pairs and mis-
matched base pairs U-U for twice and A-C for once (Fig. S1). These 
mismatches could be corrected through editing process, and should not 
affect the transport function (Wang et al., 2018). 

The large ribosomal RNA subunit (16S rRNA) was located between 
tRNALeu(CUN) and tRNAVal, and the small ribosomal RNA subunit (12S 
rRNA) was located between tRNAVal and AT-rich region. The length of 
16S rRNA was 1282 bp in E. carinatus, 1273 bp in E. dayongensis and 
1283 bp in E. herklotsi. The length of 12S rRNA was 800 bp in 
E. carinatus, 798 bp in E. dayongensis and 803 bp in E. herklotsi. The A + T 

content accounting for 66.23% in E. carinatus, 67.8% in E. dayongensis 
and 65.78% in E. herklotsi, slightly higher than PCGs and tRNAs. 

The AT-rich region was the only major non-coding segment in the 
mitogenome of insects, and contributed to the size variation of mito-
genomes. For example, Siphluriscus chinensis had the longest mitoge-
nome (16,616 bp) in mayflies. At the same time, its mitogenome 
contained the longest AT-rich region (1,829 bp). In contrast, the mito-
genome of Baetis rutilocylindratus (14,883 bp) was relatively shorter 
while it had the shortest AT-rich region (340 bp) (Li et al., 2014; Xu 
et al., 2020). In this research, the AT-rich region of the three Epeorus 
species was between 12S rRNA and tRNAIle, with the length 490 bp in 
E. carinatus, 765 bp in E. dayongensis and 634 bp in E. herklotsi. These 
data showed the size of AT-rich region could change dramatically in 
different species, even they were in same family or genus. 

3.5. Phylogenetic analysis 

In the present study, 13 protein-coding genes from 22 mayfly species 
were used as dataset to construct phylogenetic trees by BI and ML 
methods, the species Pedetontus silvestrii (Archaeognatha, Machilidae) 
and Nesomanchilis australica (Archaeognatha, Meinertellidae) were 
selected as outgroups. The GenBank accession numbers of those 24 
species used in this study were shown in Table S1 (Xu et al., 2020a, 
2020b; Zhang et al., 2008a, 2008b; Zhou et al., 2016; Tang et al., 2014; 
Gao et al., 2018; Wang et al., 2018; Cameron et al., 2004; Ye et al., 
2018). The Phylogenetic topologies constructed by two methods were 
similar except the positions of Baetidae, Leptophlebiidae and Caenidae 
(Fig. 5, shown in red block). 

Fig. 3. The relative synonymous codon usage (RSCU) in the mitogenomes of Epeorus dayongensis (ED), E. carinatus (EC) and E. herklotsi (EH).  

Fig. 4. Putative tRNA second structure and the secondary structure of tRNASer(AGN) for the three Epeorus species.  
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The BI tree indicated that ((Baetis rutilocylindratus + Alainites yixiani) 
+ (Habrophelebiodes zijinensis + ((Caenis sp. + Caenis pycnacantha))) 
with high supporting values. By contrast, ML tree provided their re-
lationships as (Habrophelebiodes zijinensis + ((Caenis sp. + Caenis pyc-
nacantha) + (Baetis rutilocylindratus + Alainites yixiani))). These 
competing results were found in related previous studies (Zhang et al., 
2008; Gao et al., 2018; Xu et al., 2020a, 2020b; Song et al., 2019; Cai 
et al., 2018; Ye et al., 2018), the main reason was believed due to the 
limited number of mitogenomes available. Despite that, our trees 
showed some valuable information. First, the families Ephemerellidae 
and Vietnamellidae were clustered together, which was consistent with 
the recent studies (Gao et al., 2018; Xu et al., 2020a, 2020b; Wu and Yu, 
2018; Cai et al., 2018; Ye et al., 2018; Miller et al., 2018). Second, the 
monophyly of burrowing mayflies (presenting by the families Pota-
manthidae and Ephemeridae in this study) was supported, and this 
finding had been inferred stably by other mayfly taxonomists (Miller 
et al., 2018; Ogden et al., 2019). Third, our results also supported the 
following relationships: ((Siphlonuridae + Ameletidae) + (Siphlur-
iscidae + Isonychiidae)), in which the two siphlonurid species demon-
strated the family Siphlonuridae was a polyphyletic group. 

The family Heptageniidae was strongly corroborated as mono-
phyletic in our topologies although the relationships within Epeorus 
remained unstable. In our trees, all four Epeorus species (E. carinatus, 
E. herklotsi, E. sp. 1 and E. dayongensis), which supported this genus was 
a monophyletic group. Furthermore, our topologies also showed the 
focal species E. carinatus and E. dayongensis were in different subgenera, 
which was consistent with the morphological data (Kluge, 2004; 
Braasch, 2006). 

In our trees, the species Paegniodes cupulatus (Rhithrogeninae) was 
the sister group of Parafronurus youi (Ecdyonurinae) instead of other 
Rhithrogeninae members (Epeorus species), which was totally contrast 
to previous morphological results (Webb and McCafferty, 2008; Zhou 
and Braasch, 2003; Wang and McCafferty, 2004; Ma et al., 2018). This 
may due to its plesiomorphic characters (Webb and McCafferty, 2008; 
Wang and McCafferty, 2004; Ma et al., 2018) and the duplicate tRNAMet 

genes. 
Due to limited molecular data and available ingroups, the phylogeny 

discussed in this research is very preliminary. With the growing number 
of available mitogenomes of Ephemeroptera, the results presented here 

will be tested by further studies. 
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