Entomological Research Bulletin

Contents

Volume 28 2012

Research paper

Taxonomic Review of the Korean Megaloptera with Description of Stalis koreana, New Species
Sang Woo Jung and Yeon Jae Bae

15

First Record of Brachonyx pineti (Paykull, 1792) (Coleoptera: Curculionidae) from Korea
Kyungduk Han, Torben Kölkebeck and Hoonbok Yi

19

First Record of Torleya japonica (Gose) (Ephemeroptera: Ephemerellidae) from Korea
Jeong Mi Hwang

Research paper

Insect diversity
Proceedings of the 4th International Symposium on Aquatic Entomology in East Asia (AESEA), Khon Kaen, Thailand, 2009
Edited by S. Narumon & S.W. Jung

Origin of Parthenogenesis in the Geographically Parthenogenetic Mayfly Ephoron shigae (Ephemeroptera: Polymitarcyidae) - Potential for Parthenogenesis of Females in a Bisexual Population -
Kazuki Sekine and Koji Tojo

Aquatic Insect Fauna of Bishou-Noi Ba National Park in Lam Dong Province, Southern Vietnam
Yan Vinh Nguyen, Quang Hue Nguyen, Thi Minh Hue Nguyen, Sang Woo Jung, Jeong Mi Hwang and Yeon Jae Bae

Aquatic Insect Fauna of Yang Vien Area in Northern Laos
Sang Woo Jung, Bounthob Prayaysombath, Manichanh Nammanivong, Chanhvilay Somvongsa and Yeon Jae Bae

A Burrowing Mayfly, Anagenesia minor (Eaton) in the Mekong River
Paiboon Getwongsa, Chutima Hanjavanit and Narumon Sangpradub

Meiofaunal Community in Different Substrate Types of Headwater Streams of Nam Nao National Park, Thailand
Chaichat Boonyanusith, Chitima Aryuthaka and Narumon Sangpradub

Adult Caddisfly Fauna and Physico-chemical Parameters of Pasak Jolasit Dam, Central Thailand
Taeng-On Prommi and Penkhae Thamsenanupap

Light-trapping of Caddisflies (Insecta: Trichoptera) at Champathong Waterfall, Northern Thailand with Reference to Local Climate
Kriengkrai Seetapan and Taeng-On Prommi

‘Origin of Insect Wings’ - An Embryological Approach of the Mayfly Bleptus fasciatus Eaton (Ephemeroptera, Heptageniidae)
Koji Tojo and Ken Miyairi

Origin of Parthenogenesis in the Geographically Parthenogenetic Mayfly Ephoron shigae (Ephemeroptera: Polymitarcyidae) - Potential for Parthenogenesis of Females in a Bisexual Population -
Kazuki Sekine and Koji Tojo

Aquatic Insect Fauna of Bishou-Noi Ba National Park in Lam Dong Province, Southern Vietnam
Yan Vinh Nguyen, Quang Hue Nguyen, Thi Minh Hue Nguyen, Sang Woo Jung, Jeong Mi Hwang and Yeon Jae Bae

Aquatic Insect Fauna of Yang Vien Area in Northern Laos
Sang Woo Jung, Bounthob Prayaysombath, Manichanh Nammanivong, Chanhvilay Somvongsa and Yeon Jae Bae

A Burrowing Mayfly, Anagenesia minor (Eaton) in the Mekong River
Paiboon Getwongsa, Chutima Hanjavanit and Narumon Sangpradub

Meiofaunal Community in Different Substrate Types of Headwater Streams of Nam Nao National Park, Thailand
Chaichat Boonyanusith, Chitima Aryuthaka and Narumon Sangpradub

Adult Caddisfly Fauna and Physico-chemical Parameters of Pasak Jolasit Dam, Central Thailand
Taeng-On Prommi and Penkhae Thamsenanupap

Light-trapping of Caddisflies (Insecta: Trichoptera) at Champathong Waterfall, Northern Thailand with Reference to Local Climate
Kriengkrai Seetapan and Taeng-On Prommi

‘Origin of Insect Wings’ - An Embryological Approach of the Mayfly Bleptus fasciatus Eaton (Ephemeroptera, Heptageniidae)
Koji Tojo and Ken Miyairi
Introduction

The burrowing polymitarcyid mayfly *Ephoron shigae* (Takahashi) is distributed widely in Japan. Some populations are bisexual, and others are unisexual, i.e., geographically parthenogenetic. Moreover, the distribution of the bisexual and unisexual populations overlap broadly in their respective geographic ranges. *Ephoron shigae* provides a good model to study the differentiation of unisexual and bisexual populations, the establishment of parthenogenesis, and the dispersal of parthenogenetic individuals. In the previous study for this mayfly, obligatorily diploid thelytoky appears in unisexual populations. However, the potential for parthenogenesis or parthenogenetic ability of females in a bisexual population is still not clearly understood. From this background, we examined the parthenogenetic ability of virgin females in the bisexual populations. As a result, it is revealed that females of this population potentially have parthenogenetic ability. The parthenogenetic individuals of bisexual population were also indicated to be of the same diploid thelytokous type as found in the other examined unisexual populations.

Key words: *Ephoron shigae*, geographic parthenogenesis, mayfly, parthenogenesis, Polymitarcyidae, thelytoky
Materials and Methods

Development Rate of Fertilized and Unfertilized Eggs of Ephoron shigae

Three bisexual populations of Ephoron shigae were examined; from Hino-yosui flume (irrigation canal; Hino, Tokyo Prefecture: 36°24′N, 138°15′E), Ara-kawa River (Konosu, Saitama Prefecture: 36°05′N, 139°26′E), and Asahi-gawa River (Okayama, Okayama Prefecture: 34°41′N, 133°56′E). In the Hino-yosui, Ara-kawa, and Asahi-gawa populations, many males as well as females were observed: the ratio of males to females almost one to one. On the other hand, a unisexual Chikuma-gawa population (Chikuma, Nagano Prefecture: 36°32′N, 138°6′E) was examined. Wherein no males were found indicating a fully unisexual population (Tojo et al., 2006).

We collected ten final instar female nymphs from the Hino-yosui population (Sep. 1, 2006) and reared them individually in the laboratory until the subimaginal stage to ensure all were virgin females. Thereafter unfertilized eggs were collected from these ten virgin females. In the Ara-kawa and the Asahi-gawa populations, we dissected final instar female nymphs and obtained their unfertilized eggs (five female nymphs from the Ara-kawa River population: Sep. 1, 2006, and also five female nymphs from the Asahi-gawa population: Sep. 19, 2006). As a control, fertilized eggs were obtained from six mated females in the Hino-yosui population (bisexual) and unfertilized eggs were obtained from twenty four virgin females in the Chikuma-gawa population (unisexual).

These fertilized and unfertilized eggs were incubated separately in batches at 20±0.5°C. At about three months of incubation, successful development rates were analyzed for each female’s egg batch of fertilized or unfertilized eggs collected from the four different populations. During embryogenesis of this mayfly, diapause commences during the last embryonic stage (Watanabe et al., 1993; Nakamura et al., 1999; Nakamura and Endo, 2001): equivalent to “stage 13” in embryos of a closely related burrowing mayfly Ephemerella japonica (cf. Tojo and Machida, 1997a, b), and release of diapause (i.e., hatching) requires a change in environmental conditions like water temperature and light conditions (under the incubated conditions in the laboratory, a long incubation time was required for completion of hatching). Differences were observed in developmental and successful hatching rates during short-term experiments over a range of several months to a half-year. Under natural conditions, several years may be required for hatching, in rare cases (Sekiné et al., 2007). Consequently, the development rate of eggs was focused upon in this study rather than the hatching rate. Judging as to whether an egg was developing or not was relatively simple because the developing and undeveloped eggs are clearly differing in color (Tojo et al., 2006).

Chromosome Number Analysis

Upon hatching of the nymphs, chromosome preparations were made and chromosomes were counted for each of the respective offspring. The nymphs were prepared on slides wounded with a needle and forceps and incubated for 30 minutes in ion-exchange water containing 0.005% colcemide. The nymphs were then fixed with fixative solution I (acetic acid : ethanol : ion-exchange water = 1 : 1 : 2). A drop of fixative solution II (acetic acid : ethanol = 1 : 1) was placed on each nymph before it was macerated with a needle and forceps while fixative solution I was spreading over the slide. After one minute, glacial acetic acid was dropped onto the slides which were then air-dried. These air-dried chromosome preparations were stained with 3% Giemsa solution (Nacalai Tesque) in phosphate buffer (Sigma-Aldrich Japan; pH 6.4) for 30 minutes. The slides were then dipped in the water for one second, and air-dried. Chromosome spreads on the slides were mounted in a mounting agent (Entellan New, Merck) and photographed under a microscope at 1000 × magnification.

Results

Table 1 summarizes the developmental rate of fertilized and unfertilized egg batches of Ephoron shigae collected from
Table 1. Developmental rate of fertilized or unfertilized eggs of Ephoron shigae

<table>
<thead>
<tr>
<th>Population</th>
<th>No. of females examined</th>
<th>No. of eggs examined</th>
<th>Percentage of embryos developing to the final embryonic stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean±SD</td>
</tr>
<tr>
<td>Hino-yosui Irrigation Canal a</td>
<td>6</td>
<td>32289</td>
<td>98.1±1.9</td>
</tr>
<tr>
<td>fertilized eggs</td>
<td></td>
<td>23966</td>
<td>14.1±13.5</td>
</tr>
<tr>
<td>Chikuma-gawa River b</td>
<td>10</td>
<td>23966</td>
<td>14.1±13.5</td>
</tr>
<tr>
<td>unfertilized eggs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ara-kawa River a</td>
<td>23</td>
<td>66698</td>
<td>89.2±4.6</td>
</tr>
<tr>
<td>unfertilized eggs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asahi-gawa River a</td>
<td>5</td>
<td>7425</td>
<td>21.5±27.5</td>
</tr>
<tr>
<td>unfertilized eggs</td>
<td></td>
<td>5881</td>
<td>3.0±4.0</td>
</tr>
</tbody>
</table>

aBisexual population
bUnisexual population: no males were found

Fig. 2. The mitotic metaphase chromosomes prepared from nymphs of the mayflies, Ephoron shigae. A, Chromosomes of 2n=11, obtained from a fertilized nymph in the bisexual population (Ephoron shigae; Hino-yosui), B, Chromosomes of 2n=12, obtained from a fertilized nymph in the bisexual population (Ephoron shigae; Hino-yosui), C, Chromosomes of 2n=12, obtained from a parthenogenetic nymph in the bisexual population (Ephoron shigae; Hino-yosui), D, Chromosomes of 2n=12, obtained from a parthenogenetic nymph in the unisexual population (Ephoron shigae; Chikuma-gawa).

Table 2. Chromosome numbers of Ephoron shigae

<table>
<thead>
<tr>
<th>Population</th>
<th>Mode of reproduction</th>
<th>Number of specimens examined</th>
<th>2n=11 (♀)</th>
<th>2n=12 (♀)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hino-yosui</td>
<td>Sexual</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Hino-yosui</td>
<td>Parthenogenetic</td>
<td>33</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Chikuma-gawa</td>
<td>Parthenogenetic</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

Kawana River and Asahi-gawa River populations were 21.5±27.5% (five batches) and 3.0±4.0% (five batches), respectively. In the unisexual Chikuma-gawa River’s population, the developmental rate of unfertilized egg batches was 87.8±7.0% (twenty four batches; this data included prior data collected in Tojo et al. [2006], 89.0±4.6% for twenty batches).

Four nymphs hatched from fertilized eggs in the Hino-yosui Ephoron shigae population, either eleven or twelve mitotic metaphase chromosomes were counted. However, amongst nymphs parthenogenetically hatched from unfertilized eggs in the Hino-yosui Ephoron shigae population, only 12 chromosomes were observed (Fig. 2, Table 2).

Discussion

In the present study, the parthenogenetic ability of virgin females in bisexual populations of Ephoron shigae is investigated for the first time, and the parthenogenetic development rates of unfertilized eggs were considerably lower than that of virgin females in the unisexual populations (Table 1). In Hino-yosui population, although the parthenogenetic development rates varied widely, parthenogenetic ability was recognized in all of the individuals examined (n=10). In Ara-kawa population, the parthenogenetic development rates of two egg batches were relatively high (53.3% and 49.8%), while two other egg batches failed to develop at all. For these egg batches, we obtained eggs from final instar nymphs (female), ra-
ther than obtaining and dissecting matured and unfertilized eggs from winged (subadult) virgin females. Therefore, the parthenogenetic abilities of the Ara-kawa and the Asahi-gawa populations may be higher than indicated in the above results.

In Ephoron shigae, Sekiné and Tojo (2007) indicated that all parthenogenetic offspring from the unisexual populations were female (2n=12), and that the reproductive mode of the unisexual populations is a diploid thelytokous parthenogenesis. The present result also indicates that all of the parthenogenetic offspring from bisexual population are females (2n= 12; Fig. 2, Table 2), similar to parthenogenetic mode of the unisexual populations. Consequently, the parthenogenetic ability of bisexual populations would be relevant in the evolutionary path to parthenogenetic evolution of unisexual populations.

Thelytokous parthenogenesis is divided into two main types from a cytogenetic standpoint as follows (White, 1973); (1) automixis or meiotic thelytoky, in which completely meiosis occurs in oogenesis, but is compensated for by a doubling of the chromosome number at some stage in the life cycle, and (2) apomixis or ameiotic thelytoky, in which meiosis has been entirely suppressed, where the maturation division or divisions in the oocyte is mitotic in character (i.e., without any formation of bivalents). However, the process and mechanisms of egg maturation and parthenogenetic recovery of diplody have not been studied, as to whether this mayfly’s parthenogenesis is of the automic or apomictic type. Hereafter, it is need that we will observe and describe the oogenesis and early embryogenesis of this mayfly.

Acknowledgements

We are grateful to Dr. B. O'Donnell of Plymouth State University for her invaluable comments on a draft of the manuscript. We wish to thank Dr. R. Machida of University of Tsukuba, Dr. M. Hatakeyama of National Institute of Agrobiological Sciences, Dr. T. Tsutsumi of Fukushima University, Dr. F. Hayashi of Tokyo Metropolitan University, Prof. H. Nakamura of Shinshu University, Prof. Emeritus N. C. Watanabe of Kagawa University, and Dr. S. Ishiwata of Kanagawa Prefectural Environmental Research Center, for valuable advice and encouragement. We are also indebted to Mr. D. Tsuruda of Hino City Office, and to Messrs K. Suzuki, T. Tanizawa, K. Miyairi, K. Oka, J. Kunimi, M. Yoshii, T. Kano, M. Sueyoshi, Y. Tanaka, and Y. Morii of Shinshu University, and for their cooperation in collecting materials. This study was supported by Grant-in-Aid for Young Scientists (A) from the Japan Society for the Promotion of Science (JSPS, #206 87005, KS) and for JSPS Fellows (#21-7173, KS), and by grants from the River Environment Fund (12-1-3-7) of River & Watershed Environment Management.

References