Research paper

Phylogeny of *Tricorythodes* Ulmer (Leptohyphidae: Ephemeroptera) based on molecular and morphological evidence

Lucimar G. Dias a, **, Carlos Molineri b, *, Daniela Takiya c, Pablo Benavides d, Tito Bacca e

*a Grupo de Investigación Bionat, Universidad de Caldas, Caldas, Colombia
*b Instituto de Biodiversidad Neotropical, CONICET (National Council of Scientific Research), Universidad Nacional de Tucumán, Argentina
*c Laboratório de Entomologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
*d Disciplina de Entomologia, Ciência Chinciná, Caldas, Colombia
*e Universidad del Tolima, Ibagué, Colombia

** Corresponding author.
E-mail addresses: lucimar.dias@ucaldas.edu.co (L.G. Dias), carlosmolineri@gmail.com (C. Molineri), takiya@gmail.com (D. Takiya), pablo.benavides@cafedefocolombia.com.co (P. Benavides), titobacca@gmail.com (T. Bacca).

**Corresponding author.
E-mail addresses: lucimar.dias@ucaldas.edu.co (L.G. Dias), carlosmolineri@gmail.com (C. Molineri), takiya@gmail.com (D. Takiya), pablo.benavides@cafedefocolombia.com.co (P. Benavides), titobacca@gmail.com (T. Bacca).

A B S T R A C T

The first phylogeny of *Tricorythodes* Ulmer (Ephemeroptera: Leptohyphidae) based on molecular and morphological evidence is presented. A parsimony analysis was conducted with 56 morphological (24 continuous and 32 discrete) characters of 48 species, 39 belonging to *Tricorythodes sensu lato* and nine additional groups. Bayesian and maximum likelihood analyses of molecular and combined molecular and morphological (32 discrete) data included a total of 22 taxa for which it was possible to extract DNA. DNA sequences used correspond to fragments of the nuclear 18S rDNA and the mitochondrial COI and 16S rDNA (total of 1804 bp). *Tricorythodes sensu lato* monophyly was tested, as well as validity of some recently proposed related genera. Results of this work fully support the synonymy of *Epiphrades* and *Tricorythodes*, as suggested by previous authors. Part of the analyses also support the synonymy of *Asioplax* and *Homoleptohyphes* with *Tricorythodes*, but they change position radically when morphology alone (parsimony) and the combined data (Bayesian and maximum likelihood) are analyzed. Furthermore, *Tricoryhyphes* was recovered as a polyphyletic group and *Cabecar* and *Loricyphes* appeared nested well within *Tricorythodes sensu lato*. Monophyletic groups of species inside this large Panamerican genus were found. A phylogenetic framework for the group is much needed to better understand the evolution of disparate nymphal body form, ecology and biogeography inside this genus.

© 2018 Elsevier GmbH. All rights reserved.

1. Introduction

Tricorythodes Ulmer (Leptohyphidae) is a species—rich and morphologically diverse Pan American genus of mayflies (Fig. 1A–F). Several taxonomists have contributed to the study of the group, and currently *Tricorythodes sensu lato* is represented by 69 species (Traver 1959; Allen 1967; Allen & Murvosh 1987; Kluge & Naranjo 1990; Wiersema & McCafferty 2000; Wiersema et al. 2001; Molineri 2001; Molineri 2002; Baumgardner et al. 2006; Dias & Salles 2006; Molineri & Zúñiga 2006; Emmerich 2007; Baumgardner 2007, Baumgardner 2008; Dias et al. 2009a; Dias et al. 2009b; Dias et al. 2011; Gonçalves et al. 2010; Belmont et al. 2011; Belmont et al. 2012; Souto et al. 2017; Granados et al. 2018).

The genus described by Ulmer (1920) has had a complex systematic history in the last decades. In 1987, Allen and Murvosh presented the first revision of the genus and proposed three subgenera: *Tricorythodes* Ulmer, *Tricoryhyphes* Allen & Murvosh, and *Homoleptohyphes* Allen & Murvosh. Later, Wiersema & McCafferty (2000) carried out a generic revision of the Leptohyphidae of North and Central America. These authors, elevated the three subgenera proposed by Allen & Murvosh (1987) to genus level, and proposed two other genera, *Asioplax* Wiersema & McCafferty and *Epiphrades* Wiersema & McCafferty, to include other species of the group. Molineri (2002) in a cladistic revision of the South American species of *T. ricorythodes sensu lato* showed that *Tricoryhyphes* was polyphyletic and the genera proposed by Wiersema & McCafferty (2000), were nested within a paraphyletic *Tricorythodes* and suggested maintaining the later name for the entire group. In 2005, Wiersema & McCafferty (2005) reviewed *Asioplax*, including some South American species previously treated formally as *Tricorythodes* by Molineri (2002). Additionally, Dias et al. (2005) proposed...
the genus *Macunahyphes* Dias, Salles & Molineri to include *Tricorythodes australis* Traver, describing for the first time nymphs of this species. These authors recognized *Macunahyphes* based on morphological characters of the nymphs, mainly mouthparts, and atypical forceps and penis shape of the male imago.

With an increased taxon and character sampling, Molineri (2006) presented a morphological phylogeny for the South American *Leptohyphidae*, which corroborated previous results where representatives of *Epiphrades*, *Asioplax*, and *Macunahyphes* were recovered within *Tricorythodes*. However, no nomenclatural changes were proposed as the author felt that the inclusion of Central and North American representatives in future studies would be desirable for a more stable classification. Later, Dominguez et al. (2006) preferred to treat the group as a unit and included in the *Tricorythodes* species list, type species of *Homoleptohyphes*, *Tricoryhyphes*, *Asioplax*, and *Epiphrades* were formalized within *Tricorythodes*. Finally, Baumgardner & Avila (2006) described the genus *Cabecar* Baumgardner based on nymphs and reared adults from Central America. According to these authors, *Cabecar* shares several characters with *Tricorythodes*, its only distinctive feature being the shape of femoral setae in the nymphs. Similarly, Baumgardner & Avila (2006) commented that a phylogenetic study would be needed to assess the proper position of *Cabecar* within *Leptohyphidae*. Thus, the valid genera up to now are: *Tricorythodes*, *Macunahyphes* and *Cabecar*.

Loricyphes Molineri & Mariano is known from nymphs and eggs, most characters indicate a basal splitting in *Leptohyphidae* (Molineri & Mariano 2015). Since *Loricyphes* shares with *Tricorythodes* some characters (e.g., the number of lamellae in gills III-VI), it is relevant to include it in this revision.

After so many efforts to improve the classification of *Tricorythodes*, we present for the first time phylogenetic hypotheses based on molecular evidence for the group. DNA sequences were also combined with novel and previously used morphological characters in systematic studies of the group (Kluge 1992; Molineri 2002; Molineri 2006; Wiersema & McCafferty 2000; Baumgardner & Avila 2006). Molecular markers (18S rDNA, 16S rDNA, and COI) used in this research are commonly used for phylogenetic analyses and other taxonomic works of mayflies (Ogden & Whiting 2003; Ogden & Whiting 2005; Ball et al. 2005; Sun et al. 2006; Hoyos et al. 2014; Massariol et al. 2016; Gonçalves et al. 2017). We believe this improved character sampling will yield more robust phylogenetic hypotheses to test the monophyly of *Tricorythodes* and the other genera proposed during the last years.

2. Material and methods

2.1. Taxon sampling

From a total of 48 species included in the morphological matrix, 39 species of *Tricorythodes sensu lato* were analyzed, representing seven of the genus—names proposed in the last decades for the group (*Tricorythodes*, *Epiphrades*, *Asioplax*, *Macunahyphes*, *Homoleptohyphes*, *Tricoryhyphes*, and *Cabecar*). Additionally, one species of *Leptohyphodes*, one of *Loricyphes*, two of *Leptohyphes*, and four of *Haplohyphes* were also included in the morphological analysis (see matrix on Appendix S1). All trees were rooted in *Leptohyphes*.

A total of 22 taxa were included in the molecular analysis, details about taxon sampling are given in Table 1. Because specimens used for DNA extraction were completely macerated, another
<table>
<thead>
<tr>
<th>Species</th>
<th>Material Examined (locality):</th>
<th>Voucher</th>
<th>Institutional Collection</th>
<th>GenBank accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haplohyphes baritu Domínguez, 1984</td>
<td>Argentina, Tucumán, Río la Hoyada, 985 m, 52°04'52"S - 7°05'29.85"W, 12/X/06, Domínguez, E. et al. cols.</td>
<td>A-Eph001PhT</td>
<td>CEBUC</td>
<td>MK059826 MK059807 MK059792</td>
</tr>
<tr>
<td>Leptohyphes ecuador Mayo, 1968</td>
<td>Colombia, Nariño, Sandona, Querubada La Honda, 18/II/07, Domínguez, E. and T. cols.</td>
<td>A-Eph003PhT</td>
<td>CEBUC</td>
<td>MK059825 MK059806 MK059791</td>
</tr>
<tr>
<td>Leptohyphodes inanis (Pictet, 1843)</td>
<td>Brazil, Minas Gerais State, Araponga, Serra do Brigadeiro, Vale das Luas, VII/05, Domínguez, T. cols.</td>
<td>A-Eph004PhT</td>
<td>CEBUC</td>
<td>MK059812</td>
</tr>
<tr>
<td>Ingroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabecar sp. (Caldas)</td>
<td>COLEMBIA, Caldas, Norcasia. Reserva Natural del Río Manso, 21/X/2014 5°39'51.3"N 74°46'56.6"W, Domínguez, T. and Cardenas, T.</td>
<td>A-Eph005PhT</td>
<td>CEBUC</td>
<td>MK059828 MK059809 MK059794</td>
</tr>
<tr>
<td>Cabecar serratus Baumgardner & Avila, 2006</td>
<td>Brazil, Roraima State, Caracarai, Río Branco, C do Bem Querer, 18−21/ii/92, Domínguez, E. cols.</td>
<td>A-Eph006PhT</td>
<td>CEBUC</td>
<td>MK059830</td>
</tr>
<tr>
<td>Macunahyphes australis (Bank, 1913)</td>
<td>Argentina, Misiones, INTA San Vicente, Km 274, 29°/86, Domínguez, E. col.</td>
<td>A-Eph007PhT</td>
<td>CEBUC</td>
<td>MK059815</td>
</tr>
<tr>
<td>Tricorythodes aff. bullus</td>
<td>Cuba, Los Morones, 19/vi/07, Domínguez, L. G., and Cardenas, T. cols.</td>
<td>A-Eph010PhT</td>
<td>CEBUC</td>
<td>MK059833 MK059817</td>
</tr>
<tr>
<td>Tricorythodes caunapi Dias, 2009</td>
<td>Colombia, Nariño, Tumaco, Tangareal, Río Caunapi, 06/ii/07, Domínguez, E. cols.</td>
<td>A-Eph011PhT</td>
<td>CEBUC</td>
<td>MK059821 MK059807</td>
</tr>
<tr>
<td>Tricorythodes cubensis Kluge & Naranjo, 1990</td>
<td>USA, New Mexico, Concho Co. Wilow Cr, 7400 ft., N33°29'37" - 108°34'20", Baumgardner.</td>
<td>A-Eph012PhT</td>
<td>CEBUC</td>
<td>MK059821 MK059807</td>
</tr>
<tr>
<td>Tricorythodes dimorphus Allen, 1967</td>
<td>Argentina, Salta, PN El Rey, A° Los Noques, 905m, S24°44'44" - W64°38'11", Domínguez, E. cols.</td>
<td>A-Eph013PhT</td>
<td>CEBUC</td>
<td>MK059835 MK059819 MK059799</td>
</tr>
<tr>
<td>Tricorythodes hiemalis Molineri, 2001</td>
<td>Brazil, Minas Gerais State, Campo Alto, Río de Prata, 09/ii/2001, Domínguez, E. cols.</td>
<td>A-Eph014PhT</td>
<td>CEBUC</td>
<td>MK059827 MK059808 MK059800</td>
</tr>
<tr>
<td>Tricorythodes montanus Kluge & Naranjo, 1990</td>
<td>Argentina, Tucumán, Acheral, Río Aranillas, 366 m, S27°06'59.9" - W65°27'43.9", Domínguez, E. cols.</td>
<td>A-Eph016PhT</td>
<td>CEBUC</td>
<td>MK059838 MK059823 MK059803</td>
</tr>
<tr>
<td>Tricorythodes quizeri Molineri, 2002</td>
<td>Argentina, Tucumán, Acheral, Río Aranillas, 28/vii/06, Molineri, C. et al. cols.</td>
<td>A-Eph017PhT</td>
<td>CEBUC</td>
<td>MK059839 MK059804</td>
</tr>
</tbody>
</table>

Table 1: Taxon sampling for the phylogeny of Tricorythodes sensu lato with DNA voucher specimen number, collecting locality, depository institution, and GenBank accession numbers for the molecular markers sequenced (COI, 16S rDNA, and 18S rDNA).

1: Sequence donated by Dr. Wills Flowers.
con-specific specimen from the same collecting event was elected as voucher and their information listed in Table 1. All examined material are deposited in the following institutions: Instituto de Biodiversidad Neotropical (IBN, Tucumán, Argentina) and Colección Entomológica del Programa de Biología de la Universidad de Caldas (CEBUC, Colombia).

2.2. Morphological characters

Thirty—two discrete and 24 continuous characters were coded from adults and immature specimens (Appendix S1). Some characters are newly proposed here, but the majority was selected from Molineri (2002, 2006), Wiersema & McCafferty (2000). Characters are given in Appendix S1 (supplementary data). Some characters of type species of Tricorythodes (Tricorythodes explicatus) were obtained from Baumgardner (2009).

2.3. DNA extraction and fragment amplification

Genomic DNA was isolated from macerated specimens previously preserved in absolute ethanol with the DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer instructions and stored at −20 °C. Three PCR primer sets were used in order to amplify the markers COI with LCO1490 (5′−GCTCAACAATCATAAAGATTTGG) and HCO2198 (5′− TAAACTCAGGGTGACCAAAAAATCA) (Folmer et al., 1994), 18S rDNA with 18Sf (5′− AGCCCAAGTCTGGTCGCACG) and 18Sr (5′− TTTACCCCTTGGACACCATAC) (Whitting 2002) and 16S rDNA with 16Sf (5′− CCTCGTTTATCATAAACACAT) and 16Sr (5′− CTCCGTTTGAACCTCAGATCA) (Ogden & Whiting 2005). PCR reactions were carried out in a final volume of 50 μl. Each reaction consisted of approximately 100 ng of total DNA, 0.5 μM of each primer (forward and reverse), 0.2 mM of each d (AGCT)TP, 1X of 5X Taq PCR buffer, 1.25U of Taq polymerase (Go Tissue Kit), and 2 μl of QIAquick PCR purification kit (Qiagen) and sequenced by Macrogen (South Korea). Electropherograms of complementary strands were aligned and checked manually in Geneious. GenBank® accession numbers to sequences obtained are given in Table 1.

2.4. Sequence alignment

COI sequences alignments (658 bp) were conducted in Geneious 9.1.8 (Biomatters Ltd.), in order to generate consensus sequences. Supplementary data) analyses coincided in many points. In particular, we find that members of Cabecar and undatus group are consistently nested within Tricorythodes (i.e., the large monophyletic group that includes T. explicatus, type species of the genus, Fig. 2).

Cabeer was represented by Cabecar serratus and an undescribed species (Cabecar sp. from Caldas), while Epiphrades was represented by Tricorythodes undatus, T. sp. from Tolima, Tricorythodes bullus and T. aff. bullus (the first two only analyzed in the morphological dataset) (Table 1). Here, in all analyses, Epiphrades species are nested within Tricorythodes, besides, in parsimony analysis, Epiphrades resulted as a polyphyletic group (Fig. 2), T. undatus (type—species of Epiphrades) and Tricorythodes sp. from Tolima were recovered as sister group of Cabecar, while T. bullus and T. aff. bullus are not related to this clade. Synapomorphies shared by this group (⁺ Cabecar undatus group) are consistently nested within Tricorythodes (i.e., the large monophyletic group that includes T. explicatus, type species of the genus, Fig. 2).

3. Results

3.1. Genera nested within Tricorythodes sensu lato

In this work, we present for the first time a phylogeny of Tricorythodes sensu lato based on molecular and morphological data. Here, parsimony (morphology data, Fig. 2) and Bayesian (molecular + morphology data, Fig. 3 and molecular data, Fig. S1 supplementary data) analyses coincided in many points. In particular, we find that members of Cabecar and undatus group are consistently nested within Tricorythodes (i.e., the large monophyletic group that includes T. explicatus, type species of the genus, Fig. 2).

Cabeer was represented by Cabecar serratus and an undescribed species (Cabecar sp. from Caldas), while Epiphrades was represented by Tricorythodes undatus, T. sp. from Tolima, Tricorythodes bullus and T. aff. bullus (the first two only analyzed in the morphological dataset) (Table 1). Here, in all analyses, Epiphrades species are nested within Tricorythodes, besides, in parsimony analysis, Epiphrades resulted as a polyphyletic group (Fig. 2), T. undatus (type—species of Epiphrades) and Tricorythodes sp. from Tolima were recovered as sister group of Cabecar, while T. bullus and T. aff. bullus are not related to this clade. Synapomorphies shared by this group (Cabecar + undatus group) are (Supplementary Appendix S2): pronotum with anterolateral projection, mesonotum with posterior tubercle, abdominal margin undulate, and shape and coloration of operculate gill (Fig. 1A). Additionally, Loricyphes was recovered inside the bullus group (Fig. 1), since this taxon shows large dorsal tubercles on the body (see list of shared characters in Appendix S2).

3.2. Genera controversially nested within Tricorythodes sensu lato

The genus Tricoryhyphes, represented in this study by Tricorythodes condylus, Tricorythodes barbus (Fig. 1B), Tricorythodes...
popayanicus, and Tricorythodes ocellus (the later for morphology only), was not recovered as a natural group in our analyses, and all species were found nested within Tricorythodes sensu lato in the parsimony analysis of morphological data (Fig. 2). However, in the combined Bayesian analysis, T. barbus was not recovered nested in Tricorythodes sensu lato, while T. popayanicus was so (Fig. 3).

Position of both Asioplax (Fig. 1C) and Homoleptohyphes varied depending on the type of data analyzed. Morphology based parsimony analysis (Fig. 2) supports Asioplax (represented by 5 species) as a monophyletic group nested well within Tricorythodes. On the other hand, in Bayesian and maximum likelihood analyses of combined (molecular and morphology) dataset, the position of Asioplax is different, with the single species represented grouping together with Macunahyphes, as sister to the remaining species of Tricorythodes (Fig. 3). The maximum likelihood analysis of molecular dataset alone recovers Tricorythodes santarita (a clear representative of “Asioplax”) as sister to a clade containing sampled Macunahyphes, Haplohyphes, Leptohyphodes, Homoleptohyphes, and Tricoryhyphes. Similarly, the parsimony analysis recovered Homo-leptohyphes (with 2 species, Fig. 2) nested within Tricorythodes, but molecular and combined Bayesian and maximum likelihood analyses (with only one species represented, Fig. 3 and Fig S1) suggest its close relationship with T. barbus (in Tricoryhyphes).

3.3. Genera recovered independently of Tricorythodes sensu lato

In all analyses conducted (Figs. 1 and 2, and Fig S1), Haplohyphes resulted in a monophyletic group of Leptohyphidae, and this genus together with Leptothyphodes and Macunahyphes were recovered as independent lineages from Tricorythodes. Penis with a dorsal
projection covered with spines is an autapomorphy recovered for Macunahyphes (Appendix S2).

3.4. Defining Tricorythodes

Based on results of this analysis, *Tricorythodes* can be defined by the following synapomorphies: forcps with basal swelling on second segment, row of thick setae and dentitsetae of maxilla directed apicomedially and galeaica with apical portion getting thinner toward the canines. Several interesting clades within this genus were recovered and are discussed below. Some species—groups are highlighted in Fig. 2.

In parsimony (morphology) and combined Bayesian analyses, the Cuban species (*Tricorythodes cubensis* (Fig. 1D), *Tricorythodes montanus*, *Tricorythodes sacculobranchis*, and *Tricorythodes sierra-maestrae*) appear related (Figs. 2 and 3), although in the former they also are related to *Tricorythodes capocnicornum* (Fig. 2) and in the later, to *Tricorythodes molinieri* (Fig. 3).

Another interesting relationship recovered only under parsimony was the grouping of *Tricorythodes arequita*, *Tricorythodes sallesi*, *Tricorythodes mirca*, *Cabecar sp.* (Fig. 1A), and undatus group, which all share the body and operculate gill with a particular coloration pattern (heterogenous pigments, small spots widely distributed in the body). This clade (Fig. 2) was not recovered in any of the analyses including the molecular dataset.

Tricorythodes diaspae, *T. molinieri*, *T. barbus* (Fig. 1B), and *T. ocellus*, based on morphological data (parsimony analysis), form a monophyletic group nested within *Tricorythodes* (condylus group, Fig. 2). However, the position of *T. molinieri* and *T. barbus* change with molecular data, because *T. barbus* appears as sister to *Homoleptophyges* (Fig. 3 and S1), while *T. molinieri* appears as sister to *T. cubensis* with high support (Fig. 3), as previously mentioned.

In this study, the close relationship between *Tricorythodes cha-laza*, *Tricorythodes cristatus*, *Tricorythodes faeoluposis*, *T. bullus* (Fig. 1F), *T. aff. bullus* and *Loricyphes* was recovered in parsimony analysis of morphological data (Fig. 2, bullus group), and these species share many morphological similarities (nymphs with tubercles on head or thorax, stout body, slender legs, and penis shape and reduced CuP in adults).

Finally, parsimony analysis of morphological data found the clade formed by: *Tricorythodes unianusius*, *Tricorythodes yura*, *Tricorythodes sp.* (Sandonia) (Fig. 1F), *Tricorythodes hiemalis*, *Tricorythodes quizeri*, and *T. popayanicus* (Fig. 1, popayanicus group) supported by a single synapomorphy: CuP strongly curved towards vein A. However, analysis including the molecular data (Fig. 2 and S1) recovered a strongly supported clade including the three later species and *Tricorythodes caunapi*. Unfortunately, we do not have molecular information for *T. unianusius* and for *T. yura* we only have information from a much conserved gene (18S).

4. Discussion

Based on the results of this study, *Cabecar* and *Loricyphes* are not supported as valid genera. We consider that *Cabecar* should be treated as a junior synonym of *Tricorythodes*, because this relationship was supported in both analyses (morphology and mole-
cules). Nevertheless we doubt about the synonymy of *Loricyphes* and *Tricorythodes*. A broader phylogenetic context, including other families (e.g., Coryphoridae, Melanemerellidae, Tricorythidae, etc.) would be important to attain a more supported hypothesis of its relationships, besides molecular data. Our results also support the synonymy of *Epiphraedes* and *Tricorythodes* proposed by Domínguez et al. (2006). In addition, these data suggest that the genus *Epiphraedes* (*T. undatus*, *T. bullus* and *E. cristatus*) proposed by Wiersma & McCafferty (2000) is a polyphyletic group, since *T. undatus* (its type—species) appears as sister to *Cabecar* (including its type—species *C. serratus*) and not closely related to *T. bullus* and *T. cristatus*. A similar case occurs with *Tricorythodes*, genus initially proposed by Allen & Murvosh (1987) as subgenus of *Tricorythodes*, treated at the genus level by Wiersma & McCafferty (2000) and including: *T. barbus*, *T. condlus*, *Tricorythodes mulalai*, *T. ocellus*, and *T. popayanicus*. According to all analyses in our study and also with trees reconstructed by other authors (Fig. 4) (Molineri 2002; Molineri 2006; Baumgardner 2008), *T. condylus*, *T. barbus*, and *T. popayanicus* were recovered in different lineages as a poly-
phylectic group.

On the other hand, *Macunahyphes*, based on morphology and molecular characters, was found to be an independent genus, the sister genus to *Tricorythodes sensu latu* in the parsimony analysis of morphological characters or included in the sister clade (*Macunahyphes australis* + *T. santarita*) in the combined Bayesian analysis. But, in this study, we only included *M. australis* (type—species) and it would be interesting in the future to include other species recently described for this genus (Molineri et al. 2011; Souto & Salles 2016). These species have some egg characteristics and genitalia different from the type—species of *Macunahyphes*, and recent findings of the nymphal stage of two of them indicate that they should be excluded from this genus.

The conflicting position of *Asioplax* in analyses based on morphology alone and in those including molecular data deserves further study. The position of this genus and others could be elucidated with the addition of molecular data to a greater number of species or complementing the morphological characters, for example, egg ultrastructure and geometric morphometrics to quantify the morphological variation of body form, gills, and legs (Fig. 4C). Here, with morphology alone, the results for *Asioplax* are similar to the phylogeny of Molineri (2006), where this genus forms a group of derived species in *Tricorythodes* (Fig. 3). It is clear that morphological data merge species of *Asioplax* in a well—supported group, but within *Tricorythodes*, as found by Baumgardner (2008), who propose a subgenus for this group.

The closeness between *T. arequita*, *T. mirca*, *T. sallesi*, Cabecar, and *T. undatus* in the parsimony analysis of morphological data, is very interesting, since part of their phenotypical similarities could not be scored in the data matrix (general aspect of nymphs, Fig. 4A). A species recently published of *Tricorythodes* from Brazil (Souto et al. 2017), *Tricorythodes tragoeida* is morphologically very similar to these species, and in future and more comprehensive studies all these species may form a well—supported group.
Tricorythodes molinerii, T. barbus, and T. ocellus are species known only by peculiar nymphs (Fig. 4B) (with large rounded tongue—like anterolateral corners of pronotum and ventral lamellae of the gills 3 to 5 with a strongly developed dorsal extension). Molineri (2002) found T. barbus as the first species splitting from Tricorythodes, while in Molineri (2006), T. barbus appears outside Tricorythodes, in a polytomy with Leptohyphodes, Haplohyphodes, and Tricorythodes sensu lato (Fig. 4), similar to our bayesian results. In the same way, the relationship found between T. molinerii and the cubensis group with molecular data is puzzling, because Cuban species form a group defined by numerous morphological features (Fig. 4D) including the shape of gills, legs, and femoral setae (Kluge & Narango 1999) and other continuous characters found here.

Based on morphology, T. uniandinus, T. hiemalis, T. quizeri, T. papayanicus, T. yura, and T. sp. (Sandona) constitute a monophyletic group (Fig. 4F), the close relationship of T. hiemalis and T. quizeri had already been documented by Molineri (2002, 2006). On the other hand, the close relationship between T. chalaza, T. cristatus, T. feculopis, T. bullus, and T. aff. bullus recovered in this study has been discussed (in part) by Molineri et al. (2014). These species have many morphological similarities (Fig. 4E): penis shape and reduced CuP in adults, form of legs, gills, and tendency to present dorsal tubercles in the nymphs (Gonçalves et al. 2010; Molineri et al. 2014).

Our morphological analysis found Homoleptohyphes as monophyletic, but well within Tricorythodes species, while the molecular data suggests a different position for Tricorythodes dimorphus. However, we could amplify only 16S for this species, thus it would be important to amplify additional markers to get a stronger hypothesis about this group.

Unfortunately, some species sampled herein were only represented by a single molecular marker (C. serratus, T. yura, T. dimorphus, T. barbus, M. australis, and T. arequita), so the additional markers would probably give more support to some nodes of the tree. This situation especially applies to T. yura and Macunahyphes, because the amplified fragment of the 18S gene is too conserved and was not very informative to study relationships at a specific level. In addition, regarding the morphological characters, the shape of the opercular gill was not used in this work, because it is a subjective character, however, we recommended in a future study the inclusion of a geometrical morphometric configuration to quantify the variation more accurately.

In relation to problems with PCR amplification of the material used in the molecular analysis, we stress that their preservation in 75% ethanol, and the age of the samples (more than 3 years old) was inadequate and possibly affected the integrity of the DNA. Srinivasan et al. (2002) discussed extensively the effect of fixatives and tissue processing on the content and integrity of nucleic acids, which agrees with our study. Thus, despite the value of this contribution, it would be interesting that results presented here can be complemented with new data, such as the additional sequence of some species or the use of other markers, for the taxonomic formalization of the clades (i.e., subgenera or genera).

5. Conclusions

Among the proposed genera of Leptohyphidae closely related with Tricorythodes (Asioplax, Cabecar, Epiphlyridae, Homoleptohyphes, Loricyphes, Tricorythodes, and Macunahyphes), only Macunahyphes is consistently supported as an independent lineage by both morphological and molecular data. On the other hand, Loricyphes, Cabecar and Epiphlyridae are consistently recovered nested within Tricorythodes. Both Asioplax and Homoleptohyphes were also recovered as independent lineages in analyses including molecular data, but nested within species of Tricorythodes sensu stricto in the parsimony analysis of morphological data.

Tricoryphyles and Tricorythodes sensu stricto (Wiersema & McCafferty 2000) were recovered as para- or polyphyletic groupings as was mentioned by other authors (Molineri 2002; Molineri 2006; Baumgardner 2008).

Due to the morphological diversity of Tricorythodes together with its wide distribution, it was largely suspected to be formed by many different lineages (Kluge 1992; Wiersema & McCafferty 2000; Baumgardner 2008). Here, some lineages (cubensis group, condylus group, bullus group, popayanicus group, undatus group, “Homoleptohyphes” group and “Asioplax” group) are recovered but their support values are not high, thus, their taxonomic formalization as subgenera must wait until addition of new data.

Acknowledgments

We are grateful to Universidad de Caldas, CENICAFFE, and the Coffee Growers Federation in Colombia for allowing the conduction of this project in their facilities. We would like to thank Vicerrectoría de Investigaciones, Universidad de Nariño, Colombia for their financial support. We are greatly indebted to Dr. Paulo Sergio Fiuza Ferreira for their support and encouragement. We also thank to Dr. Frederico Falcão Salles (Universidade Federal do Espírito Santo), Dra. Neusa Hamada, Paulo Vilela Cruz, and Jesine Falcão (Instituto Nacional de Pesquisas da Amazônia), Janice Peters (Florida A&M), and Dany González Lazo (Universidad de Oriente, Santiago de Cuba) for lending specimens. Dr. Wills Flowers generously allowed us to use his 18S sequence of Cabecar serratus from Costa Rica. Luke Jacobus made useful comments for the improvement of the present work. TNT software, free edition, is sponsored by the Willi Hennig Society. Lucio Navarro and Flor Edith Acevedo helped in molecular laboratories. CM thanks CONICET (National Council of Scientific Research) and IBN (Instituto de Biodiversidad Neotropical) for funding and permanent support (PUE099, PIP845). DMT is a research productivity fellow from CNPq (proc. 313677/2017-4) and a Jovem Cientista do Nosso Estado fellow from FAPERJ (proc. E—26/202.786/2015).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1161/j.jcz.2018.10.008.

References

Kishida, M.C., Dias, L.G., 2026. A new species of Tricorythodes (Ephemeroptera: Leptohyphidae) from Espirito Santo, Brazil. Zootaxa 5300 (4), 443–446.